

Prof. Saiful Amin
Institution of Engineers, Bangladesh

Objectives

 Civil Infrastructures have been constructed across the Asian region; however, maintenance has already become a big issue

- Although a lot of monitoring technologies and products are developed, the administrators are struggling to choose technologies since the practical specifications are not standardized
- Given strict budget, appropriate technologies are needed.

TC-28 is to prepare the guidelines on the scheme for the maintenance of infrastructure; by making best use of monitoring technology, the maintenance work would be made logical, time sensitive and costefficient

Past difficulties

- Owner: Roads and Highways Department, Bangladesh
- ☐ General arrangement: 16@30m+ (115+2@200+115) +12@30m.
- ☐ Total length: 1470m
- ☐ Total width: W=19.76m
- ☐ Foundation: CIP D2500 L=130m, 6pcs @P16, P20, 12pcs @P17, P19, 16 pcs @P18.
- ☐ Substructure: RC concrete D3000
- ☐ Superstructure: 200m span, single plane cable-supported bridge, 6 pairs per tower
- ☐ Construction stage: 2016~2021, to be completed in Jun 2021

Main bridge configuration

End pier P16, P20

3D projected model of the bridge after completion

The Bridge

Inspiring Motivations

Key deg	gradation factors considered
	Corrosive environment (temperature variation, humidity, salt, rain water)
	Aging
	Long-term effects (creep, shrinkage, relaxation, fatigue)
	Live load (repeatedly application, overload)
Conseq	uences
	Reduce driving safety
	Shorten bridge life span
	Cause accidents => costly recovery plan
	Negative impact to road traffic
Solution	ns:
	Bridge Health Monitoring System
	Real-time monitoring data
	Early warning possibility
	Take preventive actions => make sure the bridge in "good health" at all time

Concepts and Roles

Concepts

☐ Analyzing dynamic responses transferred by sensors

Extract damage-prone characteristic values

☐ Evaluate safety levels

Roles

☐ Real-time monitoring, non-stop in project life

☐ Investigate "bridge health" by non-destructive method

☐ Detect damage areas accurately

☐ Provide authority with guidance for maintenance

☐ Maintain bridge life-span

Concepts and Roles

Principles of BHMS design

Fundamental requirements

- ☐ Suitable to bridge structures
- ☐ Practical, easy to use
- ☐ Economical, cost-effective
- ☐ Highly reliable
- Sufficient accuracy
- ☐ Durable

Where to place monitoring sensors?

- Stress: where maximum stress appears @ mid-spans, piertable...
- ☐ Displacement: where maximum deformation is likely @ mid-span, end girder, tower tops...
- Vibration: dependent on mode of vibration @ mid-span, end-span, tower top...
- ☐ Cable force: most critical members @ longest cables
- Weather station: tower tops
- Traffic surveillance camera: most convenient places @ P18
- Lightning protection: tower top & inside girder

Long-term Bridge Health Monitoring Configuration

Long-term Bridge Health Monitoring Configuration

Principles of sensor selection

Monitoring Program

Paira Bridge (Lebukhali Bridge) is an Extradosed type Bridge. The super structure of Main bridge is composed of box girder and stay cable.

Regular health check up includes

- Maintenance of pot bearing , Expansion joints
- Monitoring of wind speed with anemometer for stay cables' damping factor and vibration
- Settlement behind abutment
- Shrinkage cracking on box girder segment

Sensor Layouts

1- Sensors installed during construction stage can be integrated in BHMS

Summary of sensors for Paira bridge

No	Sensor	Location	Function/Measurement	Quantity
1	Strain sensor (Str1~4)	Middle position of two mid span	Stress state of main girder	4
2	Displacement Sensor (Vd1~2)	Middle position of two mid span	Main girder displacement	2
3	Acceleration Sensor (Vb)	Mid span and top of tower	Vibration of girder and tower	5
4	Cable force sensor (F1~6)	At the six longest stay cable	Cable force	6
5	Wind Tester(WS1)	Top of the mid tower	Wind speed and direction	1
6	Temperature sensor (TWH)	Top of the mid tower	Ambient temperature, air humidity	1
7	End gap gauge(D1~2)	Expansion joint position	Deformation of expansion joints	2
8	Inclinometer Sensor (Tilt1)	Top of the middle tower	Tilt/Inclination of tower	1
9	Lightning protection (Lt1~3)	Top of each tower	Protect sensors from lightning	3
10	Camera(Ca1~2)	Both sides of the middle tower	Traffic flow monitoring	2

Feedback from FEM Model

Example of sensor placement within the PC box girder

Monitoring the Pre-stress

Summary of construction stage sensors integrated to BHMS of Paira bridge

No	Sensor	Location	Function/Measurement	Quantity
1	Strain sensor	L/2, L/4, LR – L= span length	Stress state of main girder	84
2	Cable force sensor	Every stay cable	Tension force in single strand	36

Monitoring Program of Paira Bridge

Vibration

- Main girder
- **Tower top**

Deformation

- Main girder
- **Expansion joint**

Permanent Pre-stress

Cable force

Stress

Girder stress

Environment

- **Temperature**
- Humidity

Wind

Wind speed, directions

Monitoring Program of Paira Bridge

User Interface of BHMS

Data Analysis: Calculation Model

- ☐ Early warning limits are provided by mean of finite element analysis.
- ☐ Compared with the measured data => enable authority to judge the safety levels

Data Analysis: Calculation Model

Data Analysis: Calculation Model

Maintenance and Upgrade

- (1) Weekly inspection (performed and reported by local engineers)
 - Data: display functions
 - ☐ Temperature/humidity: in the control room
 - Power supply: voltage regulator
- (2) Monthly inspection (by local engineers)
 - ☐ Sensors: loosening, damage, aging, loss, rain water etc...
 - Power supply: voltage regulator

Maintenance and Upgrade

- (3) Annual inspection (by locals & expats)
 - ☐ Data: display functions
 - ☐ Sensors: loosening, damage, aging, loss, rain water...
 - ☐ Temperature/ humidity: in control room.
 - □ Power supply: voltage regulator, stable or interrupted...

- (4) Maintenance after the warranty period (by expats)
 - ☐ Maintenance service: comprehensive inspection of software/ hardware, prepare inspection results and relevant suggestions.
 - ☐ BHMS functions normally: BHMS provider makes on-site maintenance annually
 - ☐ If abnormal due to technical reasons: on-site maintenance shall be twice a year.

Maintenance and Upgrade

- (5) Upgrade (by expats)
 - ☐ Integrated system: Included construction sensors into BHMS
 - Open system: more sensors can be added without changing the hardware
 - ☐ Up-to-date technology: stay close contact with suppliers for better solutions

Key Takeaways

- ☐ First experience of Bangladesh to engage live data gathering and analysis system for bridge operation and health monitoring.
- ☐ Health monitoring system in installed based on systematic analysis of maintenance requirements for key structural elements for site conditions.
- ☐ Remote data gathering and real time interpretation of data is possible
- ☐ Extra redundancies for data in off line mode

