

Outline

1. Deterioration of Infrastructures and Plans in South Korea

2. Monitoring Research Efforts in South Korea

3. Conclusion

1. Deterioration of Infrastructures and Plans

- Major infrastructure was intensively built from 1970s
 - The number of facilities over 30 years is rapidly increasing
 - The average year of major bridges is 15.2 years

Tunnels in year (as of 2019)

1. Deterioration of Infrastructures and Plans

Inspection strategies

Moving toward from "Reactive Management" to "Proactive Management"

 Various Institutes and Universities are working on Developing Technologies for "Smart Maintenance & Construction" to realize Proactive Maintenance

Korea Advanced Institute of Science and Technology

 Various Institutes and Universities are working on Developing Technologies for "Smart Maintenance & Construction" to realize *Proactive Maintenance*

- New/Rising Research Keywords
 - Computer Vision
 - Non-contact sensing
 - Unmanned Vehicles (UAVs and UGVs)
 - IoT sensors & Platforms

Smart Monitoring Objectives

As-Is

- Human-based inspection
 - High cost
 - Requires expert knowledge
 - Slow and subjective testing

- Minimize human intervention
- Al technologies and use of database
- **Automated Inspection Procedure with** humane decision/classification

1. Computer Vision Technologies for Concrete Crack Classification

1. Computer Vision Technologies for Concrete Crack Classification

Full-scale Pier Crack Detection using Drone Images

Semantic Segmentation using DeepLabv3+

2. Non-contact sensing for Structural System Identification and Prediction

Lidar advantages

- less vulnerable to background noises and light conditions
- simpler calibration process and less sensitive to distortion
- insusceptible to texture (or tracker) of the object surface
- simpler tracking algorithm.

2. Non-contact sensing for Structural System Identification and Prediction

3. Unmanned Vehicles for Reconstructing BIM

Images w/ semantic information

Images

3D Point Cloud

SfM

Monitoring Research Efforts in South Korea KICT KOREAN STRUCTULE OF COLLEGE CO

4. IoT Sensors & Platforms for Concrete Crack Classification

Preventive maintenance plan

Deterioration environment Analysis

Short-term bridge management action plan

Reliable bridge deterioration evaluation **Bridge maintenance history** information

Image data labeling for damage classification

Mid/long-term bridge asset management

Bridge maintenance method/cost calculation **3D Autonomous Routing** Visualization

Scalable bridge deterioration model

Monitoring Research Efforts in South Korea KICT MORANGINETRIAL STRUCT CONTROLLENGENCE CONTROLLENGE CON

4. IoT Sensors & Platforms for Concrete Crack Classification

A. C.	Step 5. 사업구분
ia i	● 노후하대용 기준변화 · 사용성변화
경쟁 시스템	Step 6. 사업정보 입력
후의 데이터 확보 및 관리 기술	기본대한
	자체제되/여권에 따른 사업 Yes No 최근 1년 간 만든 및 시고말생 간수

Conclusion

- The government's direction for monitoring major civil infrastructure is toward proactive maintenance
 - Primary objective is to provide early decisions on gradual degradations of structures
- Current efforts on developing technologies for smart monitoring & maintenance:
 - Computer Vision
 - Non-contact sensing
 - Unmanned Vehicles (UAVs and UGVs)
 - IoT sensors & Platforms
- With the new trend of research, technological innovation and the realization of proactive maintenance are expected

