

Outline

- 1. Age of Bridge Infrastructures in US (1 slide)
- 2. Periodic Inspection Requirements in US (3 slides)
- 3. Monitoring Research Efforts in US (3 slides)
- 4. Needs and Challenges in Monitoring Efforts (1 slide)

1. Deterioration of Bridge Infrastructures in US

Graphical Data based on the ASCE 2017 Infrastructure report card and

- Of the 614,387 bridges in the National Bridge Inventory, 39% are over 50 years or older. (2017)
- Including the 15% with bridges between the ages of 40 and 49, the average age of US bridge is 43 yr old.
- With the past 10-15 years of efforts, the number of structurally deficient bridges is currently at 9% of the inventory.
- Most recent 2021 report card suggests with that there are now 42% of the 617,000 bridges that are at least 50 years old, and 7.5% (46,154 bridges) are considered as structurally deficient.

2. Periodic Inspection Requirements in US

National Bridge Inventory

- FHWA requires bridges that are longer than 20 ft (6 m) on all public roads
- Requires inspection at least once every two years
- Data available for download between 1992 to 2021

317 NKA-MF-0021420000000004500000Mirage Lembke Rd Flats Canal Approx 16 miles southwest99990005117000000000000 422803791025218800073026909199002 000000502010500500000000050000000 000A15101000002000099900049000107 00000005000509990N0000N00000664 6N232723274NN487381000000031224N N N 052200000000522002010 0N3 00000018001501Y80000082030 NY 1 06251

Information for Many Bridges

Required by FHWA for NBI

Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges

92	Critical Feature Inspection	63
	Critical Feature Inspection Date	64
94	Bridge Improvement Cost	64
05	Roadway Improvement Cost	65
		65
07	Total Project Cost	66
97	Year of Improvement Cost Estimate	
	Border Bridge	66
99	Border Bridge Structure Number	66
00	STRAHNET Highway Designation	67
01	Parallel Structure Designation	67
	Direction of Traffic	68
03	Temporary Structure Designation	68
04	Highway System of the Inventory Route	69
05	Federal Lands Highways	69
06	Year Reconstructed	69
07	Deck Structure Type	70
08	Wearing Surface/Protective System	70
09	Average Daily Truck Traffic	71
10	Designated National Network	72
11	Pier or Abutment Protection (for Navigation)	72
12	Pier or Abutment Protection (for Navigation) NBIS Bridge Length	73
13	Scour Critical Bridges	75
14	Future Average Daily Traffic	77
15	Year of Future Average Daily Traffic	77
	Minimum Navigation Vertical Clearance	77
	Vertical Lift Bridge	
	ERAL	78
DDE	ENDLY A Structure Inventory and Appraisal Sheet	

Sufficiency Rating Formula and Example National Bridge Inspection Standards

Commentary NBI Record Format

APPENDIX E

2. Periodic Inspection Requirements in US

National Bridge Element Data and State DoT Inspection Data

- Element level data available from 2015 to 2021
- State DoT manages photos, load ratings, drawings, inspection reports in their own repositories separate from NBI, NBE data

Files for Each Bridge

Managed by bridge owners.

Different from state-to-state.

2. Periodic Inspection Requirements in US

Long-term Bridge Performance (LTBP) *InfoBridge*

- InfoBridge web portal started as one of the efforts of the LTBP program in 2019.
- Tries to archive, share, and allow analytics on web portal including NBI, NBE data of bridge inventory and some NDT data for limited number of bridges

Active Structural Health Monitoring Research Groups in US

Institution	Project Investigator	URL
University of Illinois at Urbana Champaign	Dr. Billie F. Spencer	https://sstl.cee.illinois.edu
University of Illinois at Urbana Champaign	Dr. John S. Popovics	https://cee.illinois.edu/direct ory/profile/johnpop
Purdue University	Dr. Shirley Dyke	https://engineering.purdue.e du/IISL/
Purdue University	Dr. Mohammad R. Jahanshahi	https://web.ics.purdue.edu/~j ahansha/
University of Michigan	Dr. Jerome P. Lynch	http://www-personal.umich.e du/~jerlynch/
Los Alamos National Lab	Dr. Charles R. Farrar	https://www.lanl.gov/projects/national-security-education-center/engineering/about-us/index.php
Rugters University	Dr. Nenad Gucunski	https://cee.rutgers.edu/fac/n enad-gucunski
University of California, San Diego	Dr. Michael Todd	https://shm.ucsd.edu/
University of California, Los Angles	Dr. Sriram Narasimhan	https://sri-lab.seas.ucla.edu
University of Nebraska-Lincoln	Dr. Jinying Zhu	https://nuengr.unl.edu/facult y/jzhu/

Active Structural Health Monitoring Research Groups in US and Canada (Asian Researchers)

Institution	Project Investigator	URL
University of Central Florida	Dr. Hae-Bum Yun	https://www.cece.ucf.edu/ha e-bum-yun/
Stanford University	Dr. Hae Young Noh	https://cee.stanford.edu/pers on/haeyoung-noh
University of Kansas	Dr. Jian Li	http://www.people.ku.edu/~j407l652/
University of Arizona	Dr. Hongki Jo	https://smartstructure.weebl y.com
University of Connecticut	Dr. Shinae Jang	https://smart.engr.uconn.edu
Missouri University of Science and Technology	Dr. Genda Chen	http://web.mst.edu/~gchen/
University of Nebraska-Lincoln	Dr. Chungwook Sim	https://engineering.unl.edu/c ee/faculty/chungwook-sim/
University of Manitoba	Dr. Young-jin Cha	https://www.youngjincha.com
University of Alabama	Dr. Wei Song	https://eng.ua.edu/eng-directory/dr-wei-song/
University of Waterloo	Dr. Chul Min Yeum	https://cviss.net

C.Sim Lab at UNL MIDWEST Hubs **NSF DIBBs NSF BD Planning NSF BD Spokes DoD ACE ERDC** Data Management Platform Large Engineering and Science Datasets Jupyter Notebooks, Ontologies/Schemas for new data collection **Big Data Pipelines** (Data Collection, Data Analytics, Data Visualization, Decision Making, Socio-Technical Impact) Decision Making, Data Fusion, Other infrastructures 2015 2016 2017 2018 2020 2023 2019 2021 2022

SMARTI Framework

C.Sim Lab at UNL

- Nebraska bridge dataset available at datacenterhub.org
- Bridge schemas for Big Data pipeline available at http://bridgingbigdata.github.io/bridgehealthschema/schema/crack.schema.json
- Created transverse crack mapping image pipeline, GPR pipeline, and load test data pipeline, examples available at datacenterhub.org (SMARTI datasets)
- Autonomous UAV control, on-board processing, corrosion on steel connection members pipeline
- Data fusion, and other infrastructures

4. Needs and Challenges in Monitoring Efforts

DHS Report (2010)

Aging Infrastructure Protection Series
Aging Infrastructure:
Issues, Research, and

Technology

BIPS 01 / December 2010

Two issues are paramount

What is the present condition?

How urgent is it to expend significant public funds to effect its repair, replacement, and management improvement?